113 research outputs found

    Stellar population analysis from broad-band colours

    Get PDF

    Gallium(III) chelates of mixed phosphonate-carboxylate triazamacrocyclic ligands relevant to nuclear medicine: structural, stability and in vivo studies

    Get PDF
    Three triaza macrocyclic ligands, H6NOTP (1,4,7-triazacyclononane-N,N′,N″-trimethylene phosphonic acid), H4NO2AP (1,4,7-triazacyclononane-N-methylenephosphonic acid-N′,N″-dimethylenecarboxylic acid), and H5NOA2P (1,4,7-triazacyclononane-N,N′-bis(methylenephosphonic acid)-N″-methylene carboxylic acid), and their gallium(III) chelates were studied in view of their potential interest as scintigraphic and PET (Positron Emission Tomography) imaging agents. A 1H, 31P and 71Ga multinuclear NMR study gave an insight on the structure, internal dynamics and stability of the chelates in aqueous solution. In particular, the analysis of 71Ga NMR spectra gave information on the symmetry of the Ga3+ coordination sphere and the stability of the chelates towards hydrolysis. The 31P NMR spectra afforded information on the protonation of the non-coordinated oxygen atoms from the pendant phosphonate groups and on the number of species in solution. The 1H NMR spectra allowed the analysis of the structure and the number of species in solution. 31P and 1H NMR titrations combined with potentiometry afforded the measurement of the protonation constants (log KHi) and the microscopic protonation scheme of the triaza macrocyclic ligands. The remarkably high thermodynamic stability constant (log KGaL =34.44 (0.04) and stepwise protonation constants of Ga (NOA2P)2− were determined by potentiometry and 69Ga and 31P NMR titrations. Biodistribution and gamma imaging studies have been performed on Wistar rats using the radiolabeled 67Ga(NO2AP)− and 67Ga (NOA2P)2−chelates, having both demonstrated to have renal excretion. The correlation of the molecular properties of the chelates with their pharmacokinetic properties has been analysed.The authors thank the financial support from the Fundação para a Ciência e Tecnologia (F.C.T., Portugal, projects RREQ/481/QUI/2006 and RECI/QEQ-QFI/0168/2012), the Rede Nacional de RMN (RNRMN), the Hungarian Scientific Research Fund (OTKA grants K-109029 and K-120224), the János Bolyai Research Scholarship (Gy.T.) of the Hungarian Academy of Sciences and the EU COST Action TD1004 “Theragnostics Imaging and Therapy”. The research was also supported by the EU and co-financed by the European Regional Development Fund (FEDER) under the projects CENTRO-07-CT62-FEDER) and GINOP-2.3.2-15-2016-00008.info:eu-repo/semantics/publishedVersio

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    Bryophyte gas-exchange dynamics along varying hydration status reveal a significant carbonyl sulphide (COS) sink in the dark and COS source in the light

    Get PDF
    Carbonyl sulphide (COS) is a potential tracer of gross primary productivity (GPP), assuming a unidirectional COS flux into the vegetation that scales with GPP. However, carbonic anhydrase (CA), the enzyme that hydrolyses COS, is expected to be light independent, and thus plants without stomata should continue to take up COS in the dark. We measured net CO2 (A(C) ) and COS (A(S) ) uptake rates from two astomatous bryophytes at different relative water contents (RWCs), COS concentrations, temperatures and light intensities. We found large A(S) in the dark, indicating that CA activity continues without photosynthesis. More surprisingly, we found a nonzero COS compensation point in light and dark conditions, indicating a temperature-driven COS source with a Q10 (fractional change for a 10°C temperature increase) of 3.7. This resulted in greater A(S) in the dark than in the light at similar RWC. The processes underlying such COS emissions remain unknown. Our results suggest that ecosystems dominated by bryophytes might be strong atmospheric sinks of COS at night and weaker sinks or even sources of COS during daytime. Biotic COS production in bryophytes could result from symbiotic fungal and bacterial partners that could also be found on vascular plants.Funding was provided by the European Research Council (ERC) early career starting grant SOLCA (grant no. 338264) and the French Agence National de la Recherche (ANR) project ORCA. T.E.G. was funded by the IdEx post-doctoral programme of the Université de Bordeaux and by a Marie Skłodowska-Curie Intra-European fellowship (grant no. 653223). J.R. was funded by NERC grant NE/M00113X/1

    Hochgeschwindigkeits-3D-Messungen

    No full text
    Unter Nutzung des GOBO (GOes Before Optics)-Projektionsprinzips wurde ein System zur schnellen Erfassung von 3D-Daten entwickelt. Dabei nehmen zwei Hochgeschwindigkeitskameras mehr als 1000 3D-Datensätze pro Sekunde von einem bewegten Objekt mit einer Auflösung von 1 Megapixel auf. Anwendungspotenzial dieser Technik liegt z. B. in den Bereichen Medizin, Fahrzeugbau und Sicherheitstechnik

    Stellar population analysis from broad-band colours

    Get PDF

    Influence of the measurement object's reflective properties on the accuracy of array projection-based 3D sensors

    No full text
    In order to increase the measurement speed of pattern projection-based three-dimensional (3-D) sensors, in 2014, we introduced the so-called array projector which allows pattern projection at several 1,000 fps. As the patterns are switched by switching on and off the light sources of multiple slide projectors, each pattern originates from a different projection center. This may lead to a 3-D point deviation when measuring glossy objects. In this contribution, we theoretically and experimentally investigate the dependence of this deviation on the measurement object's reflective properties. Furthermore, we propose a procedure for compensating for this deviation
    corecore